
CHEMISTRY MARKING SCHEME 2015 PATNA SET -56/1/P

2 D D D S S S S S S S S S S S S S S S S	Dispersed phase —liquid Dispersion medium — solid Because of no unpaired electron in Zn ²⁺ Copper salts are coloured due to the presence of unpaired electrons in Cu ²⁺ P-Methyl prop-2-en-1-ol CH ₃) ₃ C-Br Because on addition of a non- volatile solute, vapour pressure of solution lowers down and herefore in order to boil solution, temperature has to be increased, thus boiling point gets higher Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$	1 1/2 +1/2 1/2 +1/2 1 1 1
3 B C 4 2-5 ((6. B)	Dispersion medium - solid Because of no unpaired electron in Zn ²⁺ Copper salts are coloured due to the presence of unpaired electrons in Cu ²⁺ P-Methyl prop-2-en-1-ol CH ₃) ₃ C-Br Because on addition of a non- volatile solute, vapour pressure of solution lowers down and herefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1/2 +1/2
3 B C 4 2- 5 (6 B	Because of no unpaired electron in Zn ²⁺ Copper salts are coloured due to the presence of unpaired electrons in Cu ²⁺ 2-Methyl prop-2-en-1-ol CH₃)₃C-Br Because on addition of a non- volatile solute, vapour pressure of solution lowers down and herefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
4 2-5 (66. B	CH ₃) ₃ C-Br Because on addition of a non- volatile solute, vapour pressure of solution lowers down and herefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
6. B	Because on addition of a non- volatile solute, vapour pressure of solution lowers down and herefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	
	herefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
	Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$	
В		1
7. D	Decrease in concentration of reactant or increase in concentration of product per unit time	1
F	Factrors: 1)concentration of reactant 2)catalyst 3) temperature 4)Nature of reactant	
5)	5)pressure 6)surface area (any two)	1/2 +1/2
8.	S O F	1,1
(i	i) F	
9 D	Dichloridobis-(ethane-1,2-diamine)platinum(IV)	1
G	Geometrical or optical isomerism	1
	OR	
9.		1
	$[i][Co(NH_3)_6]Cl_3$	1
(i	ii)K ₂ [NiCl ₄]	
10 ($(i) C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$	1

	(ii)	
	NH ₂ NH ₂ NH ₂	1
	NO ₂ CH ₃	
11	$\Delta T_f = K_f m$	
	$T_f^0 - T_f = \frac{K_f W_B \times 1000}{M_B \times W_A}$	1
	$273 \text{K} - \text{T}_{\text{f}} = 1.86 \text{K kg mol}^{-1} \text{ x} \frac{31g}{62gmol^{-1}} \text{ x} \frac{1000}{500kg}$	1
	$T_f = (273-1.86) \text{ K}$	
	$T_f = 271.14K$ Or $-1.86^{\circ}C$	1
12	(i) Unit cells having constituent particles at the corner positions.	1
	(ii) The defect occurs due to missing of equal no of cations and anions in a lattice.(iii) The permanent magnetism which arises when magnetic moments of substance are aligned	1 1
12	in same direction.	1
13	$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
	$log \frac{4 \times 10^{-2}}{2 \times 10^{-2}} = \frac{E_a}{2.303 \times 8.314 J/K/mol} \left[\frac{1}{300} - \frac{1}{310} \right]$	
	$log2 = \frac{E_a}{19.147J/mol} \qquad \left[\frac{10}{300x310}\right]$	1
	$E_a = \frac{0.3010 \times 19.147 \times 300 \times 310}{10}$	
	$E_a = 53598 J/mol$ or $53.598 kJ/mol$	1
14	(i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the particles	1
	of dispersion medium. (ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte.	1
	(iii) On dissolution a large number of atoms or smaller molecules of a substance aggregate	1
15	together to form species having size in the colloidal range. (i)Greater solubility of impurities in molten state.	1
	(ii)Silica reacts with impurity FeO to form slag (FeSiO ₃) / acts as a flux to remove impurities. (iii)Cast iron is harder than pig iron / has lesser content of carbon.	1 1 1
16	(i)Because of the presence of triple bond between two N atoms / high bond dissociation	1
	enthalpy (ii)Because of the lowest bond dissociation enthalpy /least thermal stability. (iii)Because of low solubility in blood.	1 1
17	$(i)[CoF_6]^{3-}$ sp^3d^2 , octahedral	1/2 1/2

	(") DY(O) 12- 1 2	1/	1 /
	(ii) $[Ni(CN)_4]^{2^2}$ dsp ² , square planar	1/2	1/2
	(b) CO, because of synergic /back bonding with metal	1/2	1/2
18	$_{ m l}{ m Br}$	1	
	$CH_3 - CH_2 - C - CH_3$		
	i) CH ₃		
	$_{ii)}$ $CH_3 - CH_2 - CH = CH - CH_3$		
		1	
	D.		
	Br 		
		1	
	CH_3		
19	111)	1	
	(i)Because phenoxide ion is more stable than CH ₃ CH ₂ O ion / due to resonance in phenol, oxygen acquires positive charge and releases H ⁺ ion easily whereas there is no resonance in	1	
	CH ₃ CH ₂ OH		
	(ii)Because of hydrogen bonding in ethanol	1	
	(iii)Because it follows S $_{\rm N}1$ path way which results in the formation of stable (CH ₃) ₃ C $^+$.	1	
20	Br ₂ + KOH		
	(i) $C_6H_5CONH_2$ $C_6H_5NH_2$	1	
	NaNO ₂ + HCl		
	(ii) $C_6H_5NH_2$ $0 - 5 C^0$ $C_6H_5N^+_2Cl^-$ C_6H_5OH		
		1	
	T S A STT		
	(iii) CH ₃ CN $\stackrel{\text{LiAlH}}{\longrightarrow}$ CH ₃ CH ₂ NH ₂	1	
	OR		

23	i) Caring ,concerned, helping,empathy (any two)	1/2 1/2
	ii) By organizing competitions like slogan writing, poster making and talk in the morning assembly (any other correct answer)	1
	iii) Used to treat depression,. Iproniazid/phenelzine (any other correct example)	1/2 1/2
	iv) Saccharin/ sucralose/aspartame/alitame (any other correct example)	1
24	ОН	
	a) CH ₃ CO Cl CH ₃ CHO CH ₃ CH- CH ₂ - CHO CH ₃ CH= CH- CHO	1/2 ,1/2
	$(A) \qquad \qquad (B) \qquad \qquad (C) \qquad \qquad (D)$	1/2, 1/2
	b) i)On adding Tollen's reagent C_6H_5CHO forms silver mirror whereas $C_6H_5COCH_3$ does not.	1
		1
	ii)On adding NaHCO ₃ solution benzoic acid gives brisk effervescence but methyl benzoate does not.	$\begin{vmatrix} 1 \end{vmatrix}$
	(or any other distinguishing test)	
	c) CH ₃ CH ₂ - CH- CHO	1
	$_{\mathrm{CH}_{3}}^{I}$	
24	OR	
	a)i) CH ₃ CH ₂ CH ₃	1
	ii) CH ₃ – C=N-NHCONH ₂	
		1
	CH_3	
	CH_3	
	 iii)CH ₃ — C –OH	1
	$ m \dot{C}H_3$	1
	b) $CH_3CHO < CH_3CH_2OH < CH_3COOH$	
	c)On adding Tollen's reagent CH ₃ CH ₂ CHO forms silver mirror whereas CH ₃ CH ₂ COCH ₃ does not (or any other distinguishing test).	1

26		
	a)	
	i) Due to lanthanoid contraction.	1
	ii) Due to incomplete filling of d- orbitals / comparable energies of (n-1)d & ns electrons.	1
	iii)Because it undergoes disproportionation reaction in aqueous solution/oxidation of a metal in a solvent depends on the nature of the solvent. Cu ⁺ is unstable in water thats why it undergoes oxidation.	1
	b)	
	$2MnO_{\underline{2}} + 4KOH + O_{\underline{2}} \rightarrow 2K_{\underline{2}}MnO_{\underline{4}} + 2H_{\underline{2}}O$	1
	ii) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + H_2O + 2Na^+$	1
	OR	
26.	a) (i) Because of high $\Delta a H^o$ & low $\Delta_{hyd} H^o$.	1
	(ii)Because of more stability of Mn ²⁺ (3d ⁵)	1
	(iii) Cr^{2+} , because in +3 oxidation state Cr is more stable (t^{3}_{2g} orbital)	1/2 , 1/2
	1) Dec (2	
	b) Due to comparable energies of 5f,6d,7s orbitals. Both show contraction in size/ both show main oxidation state +3/both are electro positive and	1
	very reactive/ both exhibit magnetic and spectral properties. (any one)	1